Estimating Operating System Resource Occupation by Simulation

Bernd Däne

Bernd.Daene@TU-IImenau.de

Falk Berger, Wolfgang Fengler

Ilmenau Technical University, Germany

Topics

- 1. Introduction
- 2. Model Overview
- 3. Model Details
- 4. Simulation and Evaluation
- 5. Conclusion

Parts of this work were and are supported by Deutsche Forschungsgemeinschaft (SFB 622).

Some Screenshots are taken from: MLDesigner, Copyright (C) 2004 MLDesign Technologies, Inc. All rights reserved.

Operating System *e***RTOS**

- Study based on special system 'eRTOS'
- Developed for high performance DSP systems
- Multiple scheduling strategies:
 - Rate monotonic
 - Preemptive
- Resource management:
 - Device, memory, message
- Circular memory buffer (FIFO)

2. Model Overview

- DE domain
- Parts:
 - Kernel modules
 - Application tasks
 - Instrumentation (e.g. triggers, displays)

3. Model Details: Basic Task Model

- Atomic blocks with known time consumption
- Task switch at block boundaries only
- Time info collected by instrumentation blocks (not shown)

Kernel Model Overview

- Scheduler:
 - Combined (rate monotonic + preemptive)
- System services: Pair of blocks for each
 - Interface to application tasks
 - Interface to other kernel modules
- Invoced by events
- States represented by shared objects

Memory Management Module

Functions shown:

- nalloc() allocating memory
- *nfree()* releasing memory
- Linked by shared variables
- Info for logging purposes provided

Module ,nfree' in Memory Management

4. Simulation and Evaluation

- Runtime scenario for simulation
- Information collected:
 - Time stamps
 - Task status vs. time
 - Resource status vs. time

Visualized by standard MLDesigner components

Example Task Switch Diagram

Example Memory Occupation View

Shows FIFO memory

(enlarged detail)

Example Device Occupation View

Colums:

- Time stamp
- Device id and state
- Current owner
- Pending requests
- Live listing

0.2356: dev : owner wait[prio] 0.2356: 13 -1 -1
0.2455552169: dev : owner wait[prio] 0.2455552169: 13 1 -1
0.2611419639: dev : owner wait[prio] 0.2611419639: 13 1 2
0.2920497108: dev : owner wait[prio] 0.2920497108: 13 1 2 6[2]
0.3272022048: dev : owner wait[prio] 0.3272022048: 13 1 2 6[2] 3[99]
0.9865274578: dev : owner wait[prio] 0.9865274578: 13 1 3 6[2]
1.195372084: dev : owner wait[prio] 1.195372084: 13 1 6
1.199432084: dev : owner wait[prio] 1.199432084: 13 1 6
1.225018831: dev : owner wait[prio] 1.225018831: 13 1 6
1.23871059: dev : owner wait[prio] 1.23871059: 13 1 6
1.246435494: dev : owner wait[prio] 1.246435494: 13 1 6
1.26116341: dev : owner wait[prio] 1.26116341: 13 1 6

5. Conclusion

- Contributes to validation and testing
- Formal analysis not supported

Further work:

- More detailed modeling of control flow inside tasks
- Support for protocol verification
- Generating software from model

Questions?

Estimating Operating System Resource Occupation by Simulation