

Introduction

- Experimental project for research in multiprocessor hardware and software
- Consists of up to six DSPs (TMS320C6000 family)
- The system should also be used to develop a control system for a high precision measurement machine
- high throughput and low latency is a requirement
- We need a fast and efficient data transport between the processor nodes!

HPI-broadcast

• Master should write to the HPI of one or all slaves >we implemented a special 'broadcast' feature

- It allows the master to write simultaneously into memory locations of all slaves
- Timing of this is virtually equal to normal writes
- Saves time in contrast to access all slaves in sequence
- A dedicated address range is assigned for this feature
- Master can choose one or all slaves by address variation
- A special handling of control signals had to be implemented

A MULTIPROCESSOR DSP SYSTEM FOR A HIGH THROUGHPUT CONTROL APPLICATION

Bernd Däne, Falk Berger

- A bus-like communication structure with one master and four slaves
- Master:
- communicates with the sensors and actors
- distributes data to the slaves
- Collects data from the slaves
- Slaves:
- Runs control algorithms at full speed
- Accessed via they host port interface(HPI) ≥ zero communication overhead
- 'Comm'-processor
- Communication with the outside world via USB 2.0
- Manages data compression for a faster transport of large volume data
- Connected to the master via the HPI of them

See figure 1 ➡

Control logic

- Address decoder generates appropriate chip enable signals for the slaves
- WAIT signal from the slaves must be merged to handle different timing situations

TMS320C6701 EMIF	TMS320C6701 HPI	TMS320C6701 HPI	 TMS320C67(HPI
(Master)	(Slave 1)	(Slave 2)	(Slave n)
ED[15:0]	HD[15:0]	► HD[15:0]	 ► HD[15:0]
EA4	HCNTL1	HCNTL1	 ► HCNTL1
EA3	HCNTL0	HCNTL0	 ► HCNTL0
EA2	HHWIL	HHWIL -	 ▶ HHWIL
/BE1	/HBE1	→ /HBE1	 ► /HBE1
/BE0	/HBE0	→ /HBE0	 ► /HBE0
/WR	HR/W, HDS2	HR/W, HDS2	 ► HR/W, HDS2
/RD	/HDS	→ /HDS	 ► /HDS
	/HCS	/HCS	 ► /HCS
	/HRDY	/HRDY	/HRDY
	/HINT	/HINT	/HINT
$EA[5:log_2(n)+5]$			
/INTn Interrupt-			

Fig. 2: Control signals (simplified)

Department of Computer Architecture, D-98693 Ilmenau - Germany phone: +49 3677 69 1460 Email: falk.berger@tu-ilmenau.de http://tin.tu-ilmenau.de/ra/

Fig. 1: Overall hardware structure

Fig. 3: Board (top view), Modules from right to left: Comm, Master, Slaves 0 - 3

Fig. 4:Board (bottom view)

- Master has to transfer most of the input data to some or all slaves
- ➤a broadcast ability is recommended

• Experimental Results

- tuned experimental
- been reached
- access to the slaves (table 1)
- large data blocks

Direction and Mode	Data Rate (MByte/s)
Read from slave	6,1
Read from slave (burst)	13,3
Write to slave (burst)	14,5
Broadcast write to slaves (burst)	14,5

This work is supported by Deutsche Forschungsgemeinschaft (German Research Council) under SFB 622

Master address ranges

• Slaves appear to the master as memory devices • Each slave is assigned a memory range (for individual read/write operations)

- Surrounding project:
- Some coupled control loops
- They need often the same input data

• The timing of the masters bus cycle has been

• At 167 Mhz, a 9-9-3 figure (setup-strobe-hold) has

• Strobe duration is most critical, because WAIT signals must reliably be recognized

Broadcast mode does not differ from individual

• Burst mode provides substantial advantage for

I adi. I : ivieasurea aata rates.