
Object Nets for the Design and Verification of Distributed
and Embedded Applications

Jürgen Nützel; Bernd Däne; Wolfgang Fengler
nuetzel;bdaene;wfengler@theoinf.tu-ilmenau.de

http://www.theoinf.tu-ilmenau.de/ra1/
Faculty for Informatics and Automation

Technical University of Ilmenau
D-98684 Ilmenau, Germany

Keywords: Object-orientation, Verification, Petri nets, Embedded systems

Abstract: In this paper we present an object-oriented method for the design,
verification and implementation of embedded and distributed systems. The method
is called Concurrent Object Net (CON). The CON method is based upon extended
statecharts which use specific message links for communication. For simulation
and verification corresponding Petri nets are used. A platform abstraction
framework for CON accesses hardware in optimized manner. An application
example from the automotive domain is used to show further CON details.

1 Introduction

The design and implementation of embedded and distributed real-time systems differs
hardly from traditional software design known from office applications. Despite all
known differences we found object-oriented paradigm suitable for embedded systems as
well. But using the object-oriented design techniques for embedded systems means to
deal with two contradictory intentions. On one side the object-orientation tries to assist
the designer handling huge software systems by providing techniques like abstraction,
inheritance and polymorphism. On the other side designing embedded applications stands
for accessing hardware directly and using provided computing resources most effectively.
This often conflicts with the first intention because the traditional usage of object-
orientation doesn’t provide the demanded code efficiency for distributed and embedded
applications.

For this reason why designed a new object-oriented design method directly for the
design and verification of distributed embedded applications. The method is called
Concurrent Object Nets. The method provides a graphical semantics for classes and
objects and their interaction. An internal hidden Petri net representation of the
specification supplies the designer with simulation and verification facilities, especially
for safety critical systems. A hardware abstraction framework was integrated to realize
optimized hardware access in combination with portability and code efficiency.

In the next section a description of the object-oriented design model is given.
Afterwards the underlying Petri nets and their simulation and verification possibilities are
described. In section 4 the architecture of a visual CASE tool for Concurrent Object Net
(CON) design is introduced. Section 5 is devoted to Mercedes-Benz’s Electronic Stability
Programm (ESP) which gave us a simplified application example.

Environment

Concurrent Object Nets

Distributed Embedded Platform

Sensors Actuators

Fig. 1. The Elements of Distributed Embedded Real-Time Systems

2 Design Method for Distributed and Embedded Applications

In this section we introduce a new graphical and object-oriented design method for
distributed and embedded real-time systems. The method is called Concurrent Object

Nets (CON) and additionally provides a framework for the abstraction of distributed
embedded platforms including their actuators and sensors (see figure 1). The section starts
with a discussion about different design properties which are originated from
contradictory views on embedded and distributed systems.

2.1 Contradictory Views

If a software designer is directly involved with the logical view on the system to design,
she normally expects three fundamental logical realization properties from a design
method:

 - Concurrency. A property coming from the environment of the real-time system. At
each time different activities may run concurrently in the environment to which the
system has to react simultaneously. Concurrent Objects: All objects (instances of
Object Net classes) are working concurrently.

 - Reactivity. A reactive system reacts continuously to signals from the environment.
Active Objects (like actors) [SeGuWa 94]: All instances have their own thread of
control (hierarchical ones have several threads). Each instance is able to react directly
to its environment.

 - Guaranty for time and logical restrictions: In case of safety and real-time
requirements facilities will be needed, which ensure that some system states will
reached and some other will never occur. Additionally strict time borders for some
reactions are needed too. Safety Objects: For every Object Net class a set of such
constraints may be given. CON design ensures the fulfilment of these constraints.

If the designer (may be different to the one above) is involved with the physical view

(implementation) on the hardware, she appreciates different properties provided by the
Concurrent Object Net platform abstraction framework (PAF).

 - Portability and distributability. The functionality of the specification should be
validated (by simulation) before hardware details become visible. The real access
function to actuator/sensor hardware should be added after the validation and
verification. If an abstract actuator/sensor access exists which hides platform details,
automatic software-hardware-mapping algorithms could be applied. Such algorithms
generate an optimized and distributed implementation based upon the time restrictions
of the specification. The platform abstraction framework (PAF) provides the designer
with a class system to wrap the functionality of typical embedded controllers.

 - Being close to the hardware. Despites the request for hardware wrapping and
abstraction the implementation has to access the controller as directly as possible. The
lowest classes of PAF allow method implementation in platform’s native code (also
in assembler).

2.2 Abstract and Refined Object Nets

To make designer’s live easier when handling concurrency, safety properties and
hardware access we added object-oriented features. These features allow the designer to
abstract from code internals, to reuse and refine a design easily.

As already told Object Nets (ON) are concurrent working instances of ON classes
which may be also distributed over several platform target nodes. An ON class is a kind
of graphical template for the creation of Object Nets instances with certain interface and
behaviour. The interface of an ON class consists of a set of so called ports. Message links
connect ports of different ON instances with each other. ON instances communicate via
these message links (asynchronous or synchronous) by sending simple control messages
or messages with user defined data structure. Beside its port interface every ON class has
an internal behaviour (beside the abstract ones). Three different meta classes can be
distinguished by their internal behaviour:

 - An abstract ON class (AONC) has no specific behaviour. AONCs like all other ON
classes may have a port interface and an optional list of time and logical constraints.
During the design flow all instances of AONCs have to be substituted by instances
with refined behaviour.

 - A hierarchical ON class (HONC) encapsulates an Object Net which consists of
several ON instances connected by a number of message links. These aggregated
instances may also be created either from AONC, HONC or elementary ON classes.
Selected ports from the interface of the aggregated instances can be exported into the
interface of the surrounding HONC.

 - An elementary ON class (EONC) encapsulates a hierarchical extended state machine
[Harel 87] with additional time delays and time constraints. The EONC is the
fundamental building block. HONCs are only used for a better design structure.
Hierarchy can be removed without change in operating semantic. The peripheral
interface ports are assigned to the internal state changes. Actions (within min./max.
duration times for verification) with program code (which can be simulated because

Plat form
independent
transformat ion code

Method
implementat ion

ASC method inter face

Method
implementat ion
with simulat ion

code
C F U O s

PICOs

HW-Plat t formEnvi ronment ON

Access f rom act ions

Platform specif ic
assembler code

Simulat ion Code generat ion

Fig. 2. Actuator/Sensor Classes for Simulation/Verification and Code Generation

of the coupling with an interpreter language) are assigned to the state changes. Within
the actions access to actuators and sensors is possible. This is done through abstract
actuator/sensor classes which couple with the ON specification of the environment.
Additional local attributes (variables) extend the state space of the EONC.

Within the CON method certain inheritance rules have been defined. A subclass
always refines the superclass. An AONC can be refined to either a HONC or EONC.
Refining HONCs means (simplified speaking) to add new ports or ON instances (ONI).
Each inherited ONI can be overwritten by an ONI which is more refined than the
inherited one. EONCs can also be refined by extending their port interface. The inherited
state machine can also be refined by adding new parts (like states, state changes, actions,
attributes) or by refining the inherited states. The use of all inheritance rules is restricted
by the CON design flow.

2.3 Platform Abstraction Framework (PAF)

Within the EONCs actions allow to access peripheral actuators and sensors through
objects from special abstract actuator/sensor classes (ASC). These classes wrap the
functionality of the hardware of actuators and sensors which are connected to the
distributed embedded controller nodes. Abstract ASCs are platform independent. Their
methods correspond to the complementary ASO of the Object Net environment
specification which is used to create test patterns. In the case of implementation the CON
platform abstraction framework (PAF) provides a technology to derive concrete ASCs
from the abstract ones by inheritance. These concrete ASCs include the code for the
different target controllers.

As the right half of figure 2 shows the implementation of concrete ASC methods uses
two further meta classes from the PAF. Core function unit classes (CFUC) encapsulate
the controller core specific code which is needed to access the different function units of
the core. The PAF provides a selection of abstract CFUCs which reflect typical functional
units like ports, watchdogs or counters. These CFUCs will be used to design platform
independent peripheral interface coupler classes (PICC). PICCs hide the process
interface around the controller core. Different DACs and ADCs are typically represented

by PICCs. After the mapping of the ASOs on a specific platform CFUOs from abstract
classes will be replaced by objects from concrete classes which are coded using target
assembly language in an optimized manner.

 Beside the ASC design PAF also supports the design of controller’s communication
interfaces (CI). CI classes (CIC) also use PICOs and CFUOs for their implementation.
Unlike the ASCs the CIC are not visible from the Object Net specification. Their purpose
is to implement the message link communication on the top of different types of protocols
(e.g. CAN-Bus) and communication hardware.

2.4 The Design Flow with Object Nets

The design flow in the Object Net method is based on the principle of refinement through
inheritance. The software designer starts to discuss the problem with her customer. As a
result of this discussion the designer creates a first Object Net specification. This
specification formalizes the informal requirement of the customer. It includes instances
of AONCs. During the refinement (through inheritance) process the designer overwrites
the instances from the first specification level with instances which are more specific.

The mechanism of refinement through inheritance is very restrictive in the CON
method. Two fundamental inheritance rules define the allowed refinements. The interface
inheritance rule is based upon the principle that the environment of a subclass can not
distinguish between a subclass and its superclass if the subclass has replaced the
superclass. The constraint inheritance rule forces a subclass to fulfil the constraints of the
superclass as well.

If designer’s refinements use these inheritance rules the properties of the first
specification will be preserved. An automatic (formalized) check detects whether the
designer has violated the rules.

At the end of the refinement process a specification with all details will be found. This
specification can be graphically simulated. The last step in the design flow transforms the
fully refined Object Net specification into a specification which can be implemented on
the distributed target platform. The final mapping of the ONIs and ASOs onto the
controller nodes is restricted by the node's performance parameters and the delays of the
communication network between the nodes. The time constraints from the specification
hold further restrictions for the mapping algorithm.

3 Simulation and Verification based upon High-Level Petri Nets

For simulation and implementation every hierarchical ON will be automatically
transformed into a flat ON including only EON instances coupled by message links. If
an Object Net environment specification already exists it will be integrated. In the second
step these flat ONs will be transformed into high-level timed Petri nets using further
information from the platform (performance and delay parameters) and mapping
specification. After this conversion process the resulted Petri net will be
executed/checked in the attached back-end simulator/checker. The conversion principles
are shown within the application example at the end of the paper.

Object Net
Contraints

Temporal Logic
Expressions

Object Net
Specif icat ion

Flat tened
Object Net

High-Level
Petr i Net

Plat form and
Mapp ing

Informat ion

Object Net
Envi roment

Specif icat ion

Checker

Fig. 3. Formal Verification of Specification Constraints

The Petri net class of the simulator/checker provides several high-level features which
extend traditional Petri nets. Tokens are able to carry data of specific structure. Special
queue places are used to model communication buffers directly. Different time extensions
are available to describe time consumption of communication and software actions. These
times may vary within given min/max limits.

To check if the corresponding Petri net fulfils the timed and logical constraints of the
specification a conversion is needed. After the conversion a set of temporal logic
expression will result (see figure 3). These expressions in combinations with the Petri net
form the input for the checker. The checker informs the designer whether the
specification fulfils the constraints.

4 Visual Design Toolset

In order to assist all the features of the CON method the modular design toolset OSSI
(Object System Specification Inventory) is in development (see figure 4). It supports the
complete design and implementation cycle within a software workgroup. OSSI provides
a class/object inventory which is based on a client-server SQL database. The complete
class inheritance mechanism is controlled by that inventory. It holds the complete ON
class tree and all ON instances designed by a workgroup using CONs. The Object Net
class browser and the platform abstraction browser allow the designer to control its
project data stored in the inventory. The object mapping interface wraps the physical
representation of inventory and makes the tool architecture independent from the selected
database technology.

Object Mapping Interface

Export Fi le

Object Net
Class Browser

Tcl /Tk Widgets

Tcl
Access Graphical

ON Des ign
and

ON Simulat ion

O P N T C L
Package

Simulat ion
Resul ts

Offl ine/
Distr ibuted
Simulat ion

Flatt ing and
Convert ing

OMI

S Q L

Local or
Remote

Inventory

Platform
Abstract ion

Browser

Tcl/Tk 8.0 Interpreter

Tcl Input

Fig. 4. The Tool Architecture of OSSI

Beside the inventory OSSI integrates the full simulation and verification capability
for CON specifications. Within the Delphi designed OSSI a Tcl/Tk (Tool command
language/Tool kit) interpreter (version 8.0) is embedded [Ousterhout 94]. The graphical
design and simulation interface uses Tcl/Tk widgets for realization. To give the
interpreter access to the inventory OSSI provides additional Tcl commands written in
Object Pascal. For simulation and checking the OPNTCL [OPNTCL 98],[UnDäNü 98]
package is loaded into the interpreter. OPNTCL is a back-end Petri net simulator/checker
extension for Tcl which also allows offline and distributed execution using socket
communication (e.g. in a UNIX workstation cluster). The package was written in C++
and accepts Tcl-like textual command sequence as input. This command sequence has
been generated by the flatting and converting module. It is possible to write the command
sequences to file for the use by external code generation modules.

5 Example: Electronic Car Stability System

We use for demonstration an application example which comes from a typical real-time
domain - the electronic safety equipment for road vehicles. Our example is a simplified
car stability system similar to the Electronic Stability Program (ESP) from Mercedes-
Benz, a system which assists the driver in critical driving situations. With ESP, a
computer continually monitors car’s handling, comparing the data it receives from
various sensors with pre-programmed ideal data. The moment the car deviates from its
ideal line, ESP takes over control to bring the car back on course.

ESP works in two situations: If the driver enters a left-hand curve too quickly, the car
oversteers and threatens to go into a spin. ESP immediately springs into action, applying
the brakes to the right front wheel. The car is back on track (figure 5, left). If the car
understeers in the same curve and threatens to plow on straight ahead ESP applies the
brakes to the left rear wheel, bringing the car back on track (figure 5, right).

H O N C E S P

Whee l

Whee l

Steer ing

lateralAccel

LateralAccelerat ion

controlUnit

ControlUni t

hydraul icUnit

Hydraul icUni tsteer ing

lef tWheel

r ightWheel

arc

speed

speed

lSpeed

accel

rSpeed

arc

accel

rPress lPress

rPress

lPress

Fig. 5. ESP in Situation of Oversteering and Understeering [MERCEDES 98]

Fig. 6. The System Object Net Specification

For the demonstration we make certain simplifications. Our example considers only
understeering. Consequently we remove control of the front wheels. After this reductions
the simplified system works as follows. One sensor measures the position of the steering
wheel and two others measure the speed of each rear wheel. These values will be used in
the electronic control unit to calculate the lateral acceleration the car should have. A
lateral acceleration sensor measures the value the car really has. The measured and the
calculated value will be compared. If the difference is too great the system will apply the
brakes to one of the rear wheels until the car is back on track. Back on track means
calculated and measured lateral acceleration are almost equal. The formula which
calculates the brake pressure needed is rather complex and car type specific.

To keep the CON description short we skip the procedure of refinement through
inheritance. We start with the fully refined Object Net specification. On this level the

EONC Steer ing

arc
double

lSpeed
control
double

rSpeed
control
double

lPress
double

EONC Contro lUni t

idle

Delay > 2ms
readArc

arcBuffer

ASO steer ing Steer ingSensor
Act ion readArc {
 Set arcBuffer [steering.read]
} test

nobrake brake

Attr ibute dif f double
Guard diff IsLow {.. .} ; Guard diff IsHigh {.. .}
Action calcDiff {.. .} ; Action calcPress {...}

rPress
double

arc
double

accel
control
double

dif f IsLow
calcPress

dif f IsHigh
calcPress

calcDiff calcDiff

Fig. 7. Two EONCs from the hierarchical Object Net Specification

HONC ESP appears (see figure 6) which aggregates Object Net Instances (ONI)
representing the relevant parts of the stability system - the steering wheel (steering), the
lateral acceleration sensor (lateralAccel), the electronic control unit (controlUnit), the
hydraulic unit (hydraulicUnit) and both rear wheels (rightWheel, leftWheel). The
elementary ONI (EONI) steering continuously sends the position of the steering wheel
through its port arc (figure 7, left). The controlUnit receives this position value at its port
arc. The message triggers controlUnit to request synchronously three further sensor
values (from lateralAccel, rightWheel and leftWheel). Within the action calcDiff (figure 7,
right) all received values will be combined to calculate a new value (diff) which will be
used for the decision (by the guards diffIsLow and diffIsHigh) whether the brakes are to
apply (enter state nobrake) or not (enter the state brake). After that decision new pressure
values will be calculated and sent to hydraulicUnit.

Before the designer starts to refine the specification by inheritance, she has to ask for
the important safety properties of the system. The stability of the car depends on the time
from the point of recognition of critical situation to the application of the brakes. In other
words, the time between reading the acceleration sensor and changing the brake pressure
has to be below a hard limit. A further safety property is the time between the first
application of the brakes (state brake) and the reentering of normal state (state nobrake).
All these constraints can be written with the Object Net Constraint Language (ONCL).
Together with the corresponding Petri net (figure 8 shows a part from it) the verification
can be started, as shown in figure 3.

To finish the description of the application we show a part of the corresponding high-
level Petri net which is invisible to the designer. Figure 8 shows the EONI steering, a part
of the EONI controlUnit and the message link between them. The right part of the net
shows the port accel and its assignment to the state change. The white places may carry

steering.idle

[2ms]

send.arc
double

arcBuffer

[readArc. tmin,readArc. tmax]
readArc

controlUnit .nobrake

calcDiffreceive.arc
double

send.accel

receive.accel
double

accelBuffer

EONI steer ing on node 1 EONI contro lUni t on node 2Communcat ion channel between
node 1 and node 2

arcBuffer

[com.tmin,com.tmax]

[calcDiff . tmin,
calcDif f . tmax]

Fig. 8. A Part of the Corresponding Petri Net

only “black”control tokens. Gray places may carry data tokens describing the messages.
Some transitions which activate actions or describe communication delays have
additional time intervals. Within these intervals the transition fires.

6 Conclusion

The Concurrent Object Net (CON) method in combination with its platform abstraction
framework (PAF) was designed for easy access to the domain of distributed embedded
systems. Our intention was to address engineers who are familiar with hardware details
but not willing to become a computer scientist. Beside easy programming of
heterogenous platforms we focused on verification of safety critical systems. Our future
goals will be to rise the acceptance of simulation and verification in the embedded system
domain.

References

[Harel 87] Harel, David: Statecharts: A visual formalism for complex systems,
Science of Computer Programming, Vol. 8, p. 231-274, 1987

[MERCEDES 98] Daimler-Benz: The Mercedes-Benz Homepage, 1998:
http://www.mercedes-benz.com/

[OPNTCL 98] Nützel, Jürgen: Opntcl (Object Petri Nets based on Tcl) Homepage, 1998:
http://www.theoinf.tu-ilmenau.de/opntcl/

[Ousterhout 94] Ousterhout, John: Tcl and the Tk Toolkit, Addison-Weseley, 1994

[SeGuWa 94] Selic, B.; Gullekson, G.; Ward, P. T.: ROOM - Real-Time
Object-Oriented Modelling, John Wiley & Sons, 1994

[UnDäNü 98] Unger, H.; Bäne, B.; Nützel, J.: Experiences Simulating the Load Sharing
System LYDIA with High Level PN, HPC’98, Boston, April 1998

