Der Einsatz hybrider Petri-Netze beim Entwurf eingebetteter Systeme für mechatronische Anwendungen

Wolfgang Fengler Thorsten Hummel Vesselka Duridanova Technische Universität Ilmenau Institut für Theoretische und Technische Informatik Fachgebiet Rechnerarchitekturen e-mail: wfengler,thummel,vesselka@theoinf.tu-ilmenau.de

Gliederung

1. Motivation

2. Hybride Petri-Netze

3. Anwendungsbeispiel

4. Zusammenfassung / Ausblick

Motivation

Eingebettete Systeme

- Komplexe Hard- und Softwaresysteme
- Enthalten häufig Elemente, die unterschiedlichen Zeit- und Signalvorstellungen entsprechen
- → Heterogene oder hybride Systeme
- o Beschreibung durch unterschiedliche Formalismen
 - + analog: kontinuierliches Zeitmodell
 - + digital: diskrete Ablaufschritte
- Einheitliches Beschreibungsmittel f
 ür unterschiedliche Zeit- und Signalvorstellungen
 - → Hybride Petri-Netze

FU Ilmenai

Hybride Petri-Netze

- Basierend auf den durch David und Alla eingeführten kontinuierlichen Petri-Netzen
 - Marken werden nicht ganzzahlig interpretiert, sondern in eine theoretisch unendliche Menge von Markenbruchstücken zerlegt
 - Den kontinuierlichen Transitionen wird anstelle der Schaltzeit eine Feuergeschwindigkeit zugeordnet
- Kombination klassischer diskreter S/T-Netze mit kontinuierlichen Petri-Netzen
 - Spezielle Hybride Petri-Netz-Klasse (Drath, TU Ilmenau)

Hybride Dynamische Netze (HDN)

HDN = (P, T, F, P_T, T_T, F_T, E) \rightarrow Hybrides Dynamisches Netz

(1) P, T, F \rightarrow endliche Mengen mit

 $\mathsf{P} \cap \mathsf{T} = \varnothing, \ \mathsf{P} \cup \mathsf{T} \neq \varnothing$

- (2) $P_T \quad P_D \rightarrow \text{diskrete Plätze}$
 - $P_{\kappa} \rightarrow$ kontinuierliche Plätze

 $\mathsf{P}_\mathsf{D} \cap \mathsf{P}_\mathsf{K} \texttt{=} \varnothing$

(3) $T_T \quad T_D \rightarrow \text{diskrete Transitionen}$

 $T_{\kappa} \rightarrow$ kontinuierliche Transitionen

 $T_D \cap T_K = \emptyset$

(2)
$$F_T$$
: $F = K_{SEK} \cup K_{SAK} \cup K_{TEK} \cup K_{IEK}$
mit $K_{SEK} \cap K_{SAK} \cap K_{TEK} \cap K_{IEK} = \emptyset$

Hybride Dynamische Netze (HDN)

 $E = (C, RE, PR, z, M, M_0, G, T_M, V, NA) \rightarrow Netzerweiterungen$

- (1) C: Kapazität der diskreten Plätze P_D
- (2) PR : Priorität einer diskreten Transition T_D
- (3) z : Zeit als globale Variable des Gesamtsystems
- (4) M : Markierung zum Zeitpunkt z
- (5) M₀: Anfangsmarkierung

 $\mathsf{P}_\mathsf{D} \to N^{\scriptscriptstyle +}$

 $P_{K} \rightarrow R$ (negative Markierung möglich)

- (6) G: Funktion einer gewichteten Kante
- (7) T_M : einer diskreten Transition zugeordnete Zeit relativ zur globalen Zeit z
- (8) V : einer kontinuierlichen Transition zugeordnete Geschwindigkeitsfunktion f(z, M)

Hybride Dynamische Netze (HDN)

Modellierungstool - Visual Object Net ++

- Objektorientiertes Werkzeug zur Modellierung, Visualisierung und Simulation von HDN
- Modellierung hybrider Systeme unter objektorientierten Gesichtspunkten
 - Modellierung von Teilsystemen und Abstraktion in Klassen
 - Hierarchische Beschreibung
 - Modellierung mit Hilfe von in einer
 Klassenbibliothek abgelegten Objekten

Modellierungstool - Visual Object Net ++

$An wendungs feld \rightarrow Mehrkoordinaten antriebe$

TU Ilmenau

Mehrkoordinatenmesssystem - Ausschnitt

Mehrkoordinatenmesssystem - Ausschnitt

TU Ilmenau

Komponente - Messung

Komponente - Minmax

Fak. Informatik und Automatisierung ullet Inst. Theoretische und Technische Informatik ullet FG Rechnerarchitekturen 15

TU Ilmenau

Zusammenfassung - Ausblick

- Hybride Petri-Netze ermöglichen eine einheitliche Modellierung von heterogenen Systemen
- Der objektorientierte Ansatz der verwendeten Netzklasse erlaubt die übersichtliche Modellierung auch größerer hybrider Systeme
 - zukünftige Aufgaben:
 - Erweiterung und Vervollständigung des Modells
 - Einbindung in den gesamten Entwurfsprozess