
A CASE STUDY FOR PARTITIONED MODELLING OF A CONTROL SYSTEM

Bernd Däne, Wolfgang Fengler

Ilmenau Technical University
P.O. Box 100565
98684 Ilmenau

Germany
{bernd.daene|wolfgang.fengler}@tu-ilmenau.de

ABSTRACT

This paper describes a case study and additional con-
siderations about modelling an embedded high-
performance control system. Special consideration is
given to a partitioning concept that supports distinction of
partitions for the actual implementation, the environ-
mental model and instrumentations for simulation only.
This concept does not press the model into a certain struc-
ture but still provides hierarchical properties to the parti-
tioning process. The model uses a multi-domain approach
with both continuous-time and discrete-event views. It
includes signal-flow components as well as statechart dia-
grams. Goals of the modelling process are functional vali-
dation of the solution and performance evaluation. In fu-
ture the approach should contribute to a methodology for
generating software from the model. The modelling envi-
ronment in the study has been a multi-domain modelling
tool. An experimental implementation of the partitioning
algorithm helped investigating the method. Further im-
provements are discussed too.

KEY WORDS
Modelling, Computer Control, Real-Time Program-

ming, Mixed Models.

1. Introduction
Modelling and simulation environments provide a use-

ful way for the systematical design of embedded systems.
This approach avoids programming errors and provides a
number of ways to check the design by simulation and
formal analysis. This work deals with graphical modelling
methods where models consist of blocks, signals and hier-
archical refinements.

In the modelling process some kind of partitioning oc-
curs. This means that model elements will be mapped to
certain partitions of the model. One common procedure is
partitioning into hardware and software partitions during
hardware-software-codesign. But other views to model
partitioning are also of interest, as described below.

The model must not only include the embedded system
being designed (e.g. the controller) but also some embed-

ding environment (e.g. the controlled process). Only in
this way the interaction of the controller with the con-
trolled process can be investigated and useful information
about the solution can be derived. So the model includes
the embedded system, the embedding environment and the
interface elements between them. The latter constitute the
input and output ports of the embedded system.

Since the model partition that contains the embedded
system is intended to implement a real system it will be
referred to as implementation partition of the model. The
partition that contains the embedding environment will be
referred to as environment partition.

Other elements may have been added for simulation
purposes only (sometimes formal analysis may also be
supported by additional model elements). Such elements
may generate stimuli or collect data, for instance. The
elements can work interactively (user input and live dis-
play during simulation) or not. They may be supported by
other operational elements that do some scaling, format-
ting and so on.

Such elements must be distinguished from the embed-
ding environment because they do not establish interfaces
to the embedded system. This special partition of the
model here will be referred to as instrumentation parti-
tion.

Generally hierarchical model structures are used.
Therefore there must be a concept how to propagate the
mapping information downwards the hierarchical tree.
This kind of partitioning a model mostly must be done
manually because this information derives from user’s
intention. But a method is needed that supports the user in
this process and provides flexibility while preserving the
model’s consistency.

2. Known Approaches
This section will outline how the mapping of the blocks

of the model to the partitions mentioned above can be
handled during the modeling process. Some shortcomings
will be identified.

Top Level Blocks
Some implementation frameworks require the whole

implementation part to be in just one block at an upper (or
the uppermost) hierarchical level. The ports of this block
automatically constitute the embedded system’s in-
put/output interface.

As an example the Polis framework uses this approach,
as described by Balarin et al. [1]. This framework allows
generating code from a discrete event model. Here exactly
one block must be identified that fully contains the gener-
ated system. Similar methods have been used by H. Rath
[2] and by ourselves in former work [3].

Since there is no distinction between embedding envi-
ronment and instrumentation, the latter parts must be re-
moved from the model prior to generating code. Other-
wise unwanted inputs and outputs would be generated.

The approach may be generalized by defining exactly
one block for each of the three partitions (implementation,
environment, instrumentation). A similar method would
be defining one block for implementation and one block
for environment. Everything outside these blocks belongs
to instrumentation. The blocks mentioned above will most
likely reside at top hierarchical level.

This generalized scheme provides full support for de-
fining the actual inputs and outputs of the system gener-
ated. They can easily be examined and extracted since
they all are located at the same hierarchical level.

But a closer look at some nontrivial models reveals the
main shortcoming: All connections that cross the borders
of the partitions at first must be routed to the top level
block of this partition, possibly traveling through some
hierarchical levels and requiring numerous additional
ports at the borders of lower level blocks. This leads to a
model structure where the sources and the sinks of cross-
partition connections typically reside at different places

and must be followed through some levels in order to find
the counterpart.

While this approach clearly represents the organiza-
tional structure of the model it unfortunately hides its
functional structure. As an example think about control
loops that are deeply embedded in the model. The imple-
mentation partition contains the control algorithms, while
the environment contains the process controlled. In this
scheme the control loops are divided into two distant parts
each, and their relationships are not clearly visible.

So this approach leads to poorly structured models that
are overcrowded by connections and ports and that hide
their functional structure instead of exposing it. Figure 1
schematically illustrates this problem.

Textual Reference
This overcrowding by connections and ports may be

removed if the cross-partition connections are represented
by textual reference. By doing so the graphical model ef-
fectively divides into two or three non-connected parts.
The advantage is that these references may be placed in
deep levels near the interfacing blocks. So there is no need
for routing them through higher hierarchical levels. But
the approach lacks any kind of graphical representation of
the relationships, since text symbols must be searched for
instead of looking for visible connections.

However, this approach has been used in a former work
dealing with an object oriented modelling paradigm [4].
As expected the models had clean structures, but it was
difficult to recognize functional relationships.

3. Concept: Individual Assignment of
Blocks

To overcome these shortcomings, our approach deals
with blocks that may be individually assigned to different
partitions, at any hierarchical level. This seems straight-
forward and easy to implement. But some considerations
are needed about handling such properties when refining
the model into deeper levels and about visual representa-
tion. Furthermore the concept should contribute to valida-
tion procedures. The approach explained below deals with
such questions. It has been practically examined in a case
study [5].

Mapping Information
The method attaches the mapping information as a pa-

rameter to each of the blocks of the model. This applies to
bottom level blocks (leaves) as well as to higher level
blocks that may contain deeper levels of the model. This
parameter is the primary representation of the mapping
information, i.e. the membership of the block to one of the
partitions.

Figure 1: Structural view to a model partitioned by
top level blocks.

Implementation Environment

Instrumentation

Exactly one of the following values is to be assigned:

• None.
The block is not yet assigned to one of the parti-
tions.

• Implementation.
The block is assigned to the partition of the
model that constitutes the embedded system that
will be implemented.

• Environment.
The block is assigned to the partition of the
model that constitutes the embedding environ-
ment.

• Instrumentation.
The block is assigned to the partition of the
model that contains elements for simulation only.

• Miscellaneous.
The assignment of this block is to be defined
automatically.

While the purposes of the ‘Implementation’, ‘Environ-
ment’ and ‘Instrumentation’ values already have been
discussed, the others need further explanation.

‘None’ means that no assignment for this block has
been made. This is the initial state of a block if no other
assignment is done by rule. For a fully partitioned model,
all bottom level blocks (leaves) must have a mapping dif-
ferently to ‘None’.

‘Miscellaneous’ is introduced as a kind of ‘don’t care’
property. Typically it is used for elements that do not
really process data, such as splits and joins. When the in-
terface of the embedded system is to be defined they will
automatically be assigned to one of the partitions. This
decision optimizes for minimal cross-partition connections
and consequently for minimal input/output effort of the
embedded system. Since the value ‘Miscellaneous’ will be
preserved in the model, this assignment may change if the
generation process is repeated after modifying the model.

Initial Mapping Values
The initial mapping value of a newly created block in-

stance is defined by the following rule:

• If the block resides inside another block (i.e. re-
fines it) that has one of the values ‘Implementa-
tion’, ‘Environment’ or ‘Instrumentation’, it in-
herits this value.

• Otherwise, the block gets the mapping value
‘None’.

By using these rules, the refinement elements of blocks
that already belong to one of the model partitions by de-
fault will be assigned to just this partition. This does not
apply to the refinement of ‘Miscellaneous’ blocks because
this value does not represent a partition membership.

Changing Mapping Values
The mapping value of any block may be changed by

user decision. In some cases this change will propagate
into deeper levels of the model. The following rules apply:

• The user can assign any value to the block. This
will override the former value, unless the next
rule applies.

• Successful assignment of one value out of ‘Im-
plementation’, ‘Environment’ and ‘Instrumenta-
tion’ to a block will propagate this value down-
wards to the next hierarchical level (i.e. to the re-
finement of this block), if available. All blocks
with value ‘None’ in this level will be overridden
by the value propagated. For each of these blocks
this process iteratively continues downwards the
hierarchy. Blocks with mapping values other then
‘None’ remain unchanged.

Note that these rules are intended to support the process
of model creation rather than defining the model’s final
structure only. The partition membership of blocks can be
defined prior to or after their creation because the assign-
ment applies to previously undefined elements und to
elements that will be created in future.

The mapping information is handled consistently to the
model’s hierarchical structure. So the partitioning process
leads the user hierarchically through the model. While
many blocks through some hierarchical levels can be as-
signed at once, intentional assignments previously made at
deeper levels will be preserved.

Support for Implementing a Target System
To continue with the design process the implementa-

tion part must be extracted from the model. In this step the
input/output interface must be defined. The following
rules are to be used:

• Look for bottom level blocks (‘leaves’) with
mapping value ‘None’. If found, stop the process
and prompt an error message.

• Look for bottom level blocks with mapping value
‘Miscellaneous’. Assign to each of them one
temporary mapping value out of ‘Implementa-
tion’, ‘Environment’ and ‘Instrumentation’. This
decision should minimize the number of cross-
partition connections.

• Collect all bottom level blocks with mapping
value ‘Implementation’ (including temporary
values).

• Collect all ports of these blocks that are con-
nected with at least one block with mapping
value ‘Environment’.

The collections produced by the last two rules consti-
tute the embedded system to be generated and its in-
put/output interface, respectively. Obviously only the
mapping values of bottom level blocks contribute to the

Figure 2: Top level of model, with blocks belonging to ‘Instrumentation’ (In) and ‘Im-
plementation’ (Im) partitions as well as ‘None’ (N) blocks.

In

Im

N

N

N

final mapping. This means that mapping values of higher
level blocks are aimed at controlling the refinement proc-
ess during model development.

4. The Case Study
As already mentioned this concept has been practically

examined in a case study. In this study a general-purpose
multi-domain modelling tool experimentally has been
equipped with the capabilities needed. Using this setup,
some complex models for a real project, a high-precision
measurement system as explained in [6], have been devel-
oped and examined.

Modelling Tool
The case study uses the general-purpose modelling and

design tool MLDesigner [7]. MLDesigner is a commercial
tool that utilizes modelling principles from the well-
known Ptolemy tool [8], also known as Ptolemy Classic,
in a renewed implementation.

In contrast to Ptolemy the MLDesigner tool uses XML-
files to store the models. This makes the model accessible
for manipulation by external processes.

Implementing the Mapping Concept
For this experimental implementation the tool’s pa-

rameter mechanism has been utilized to contain the map-
ping information of each block. The functionalities of
value propagation and visual representation have been

added by using an external program. This program filters
the stored model representation, manipulating it in the
desired manner. It propagates changed values into deeper
levels by applying the rules mentioned above. Then it
modifies a color property of the blocks to provide a visual
representation. For a final solution the algorithm will be
integrated into the modelling tool.

Example Models
Example models have been created for a real project

that deals with high precision measuring machines [9].
Basically the machine works by moving a carrier with an
object in all three dimensions. Position values are meas-
ured with high precision (less then two nanometers) and
controlled by closed loop control. Features at the object’s
surface are detected by fixed probe devices so the process
delivers high precision position values for these features.
Such machines are also known as ‘Scanning Probe Micro-
scopes’ (SPM).

The models are mixed from discrete-event and con-
tinuous-time paradigms and exhibit a multi-domain na-
ture. They are developed from a previously created model
described in [6]. While the target system of the design
process is an embedded multiprocessor system that mainly
performs closed loop control algorithms and processing of
sensor values, the mechanical and optical parts of the ma-
chine constitute the embedding environment that is to be
included into the model too.

nano_scanner show_positions

laser_noise

xyAxControl

xyzControl

Figure 3: Refinement of block ‘nano_scanner’, with blocks belonging to ‘Environment’ (E) and ‘Instrumentation’ (In)
partitions as well as ‘Miscellaneous’ (M) blocks.

E

E

E

E

M
M

M

M

M

M
M

In

In

In

In In
In

Some of the functions modeled are as follows:

• Control loops for high precision position control,
including electro-magnetic actuators, mechanical
assemblies, laser-optical position sensors, sensor
signal processing, control algorithms.

• Initiation and control of function sequences.

• Controllable error and noise models.

• Recording and/or interactive display of values
and states during simulation.

The model structure was based on the functional rela-
tionships of the blocks. The assignment of blocks to the
model’s partition was handled by using the concept devel-
oped. It became visible that the method was easily han-
dled by the users and lead to useful, clearly arranged mod-
els.

Figure 2 shows the top level of the main model. Only
five blocks appear. The block ‘nano_scanner’ models the
mechanical system of the measurement machine, consist-
ing of movable parts that can be positioned with high pre-
cision. Embedded at deeper levels are components that
simulate errors and noise influences and collect informa-
tion during simulation. At this level partition membership
of this block had not been defined (mapping value
‘None’).

The same is true for block ‘laser_noise’, containing
elements of the measurement system and assigned error

models, and for block ‘xyzControl’, containing main parts
for closed loop control of positions.

The block ‘xyAxControl’ mainly contains software com-
ponents for sequence control and operation management
of the machine that belong to the ‘Implementation’ parti-
tion. So this mapping property has already been defined at
this level and has automatically been propagated into
deeper levels.

The block ‘show_positions’ contains elements that col-
lect and visualize position values during simulation and is
therefore assigned to the ‘Instrumentation’ partition.

Remark: These figures are screenshots taken
from the actual modelling tool. Since the visuali-
zation of mapping values originally done by col-
ors does not apply to monochrome figures these
values are clarified by letter symbols (inserted
manually). Please refer to figure captions for ex-
planation.

Figure 3 shows the refinement of the block
‘nano_scanner’ containing model components for the
mechanical system (e.g. ‘3d_system’ and ‘cantilever’,
belonging to ‘Environment’ partition), ‘Instrumentation’
elements (e.g. sources for parameters that are controllable
during simulation) and a number of ‘Miscellaneous’
blocks such as forks and blackholes (dummy destina-
tions). While this block ‘nano_scanner’ basically belongs
to the model environment, handling of blocks with other
mapping properties is not hampered inside this level.

3d_system

surface_mode

cantilever

fork

const 0

N

BlackHole

z_limit

add

x_y_limit

fork

fork

fork

fork

fork

add

add

bdaene

Figure 4 illustrates simulation results by showing a part
of the interactive plot of position values delivered by ele-
ments inside the ‘show_positions’ block. Intended step-
wise changes of x and y values are visible as well as un-
wanted vibration and noise errors in all three axis.

5. Results and Conclusion
In this paper a flexible concept for assigning a model’s

components to different model partitions has been defined
and explained. The concept has been implemented and
examined experimentally with nontrivial models from a
real project. The main expectations concerning flexible
handling during model development have been met.

Further work will include refining the method and fully
integrating it into the modelling tool. The method can be
further developed by generalizing the predefined set of
model partitions into a dynamically extensible partition
concept. This allows supporting partitioning problems
such as hardware/software partitioning or workload parti-
tioning for multiprocessor systems by the same approach.

Moreover the inclusion of methods of multitasking
software behavior [10] and code generation for target sys-
tems [3] will be explored in order to contribute to an inte-
grated design framework for embedded systems.

6. Acknowledgements
This work is supported by Deutsche Forschungsge-

meinschaft (DFG) under SFB 622.

MLDesigner © 2004 MLDesign Technologies, Inc. All
rights reserved. http://www.mldesigner.com/

References
[1] F. Balarin, P. Giusto, A. Jurecska, C. Passerone, E.
Sentovich, B. Tabbara, M. Chiodo, H. Hsieh, L. Lavagno,
A. L. Sangiovanni-Vincentelli, & K. Suzuki, Hardware-
Software Co-Design of Embedded Systems. The POLIS
Approach, Boston, USA, Kluwer Academic Publishers,
1997.

[2] H. Rath, & H. Salzwedel, ANSI C Code Synthesis for
MLDesigner Finite State Machines, Synergies between
Information and Automation, 49th International Scientific
Colloquium, Aachen: Shaker, Germany, 2004, 107-112.

[3] B. Däne, & W. Fengler, Implementing Mixed Dis-
crete-Continuous Models into Realtime Environments,
MIC 2004, The 23rd IASTED International Conference
on Modelling, Identification, and Control, Grindelwald,
Switzerland, 2004, 583-588.

[4] J. Nützel, B. Däne, & W. Fengler, Object Nets for the
Design and Verification of Distributed and Embedded
Applications, Proc. EHPC'98, 3rd International Workshop
on Embedded High Performance Computing at the First
Merged Symposium IPPS/SPDP'98, Orlando, USA, 1998,
953-962.

[5] E. Kaufmann, Modelling Methodology for Embedded
DSP Systems Design (Diploma Thesis 2004-05-
03/048/IN96/2231), Department of Computer Architec-
tures, Ilmenau Technical University, Ilmenau, Germany,
2004.

[6] W. Fengler, B. Däne, & V. Duridanova, Design Meth-
odology for an Embedded System for High-Performance
Computing, Proc. WRTP'03, 27th IFAC/IFIP/IEEE Work-
shop on Real-Time Programming, Lagow, Poland, 2003,
123-128.

[7] V. Zerbe, U. Freund, & H. Salzwedel, Mission Level
Design of Control Systems, Proc. SCI/ISAS’99 Multicon-
ference on Systemics, Cybernetics, Informatics, Orlando,
USA, 1999, vol. 7, 237-243.

[8] J. T. Buck, S. Ha, E. A. Lee, & D. G. Messerschmitt,
Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems, Int. Journal of Computer Simula-
tion, 22(4), 1994, 155-182.

[9] G. Jäger, E. Manske, T. Hausotte, W. Schott, Opera-
tion and Analysis of Nanopositioning and Nanomeasuring
Machine, Proceedings 17th Annual Meeting, ASPE, St.
Louis, USA, 2002, 299 – 304.

[10] B. Däne, W. Fengler, & F. Berger, Modelling and
Simulation of Operating System Behavior, Proc.
MSO 2003, IASTED International Conference on Model-
ling, Simulation and Optimization, Banff, Canada, 2003,
78-81.

Figure 4: Example position display from simulation
(x, y, z position values, partly shown).

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
10-7

3.25 3.30 3.35 3.40 3.45

m

3.50

time s

p
o
s
i
t
i
o
n

y

x

z

