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ABSTRACT 

This paper describes a case study and additional con-
siderations about modelling an embedded high-
performance control system. Special consideration is 
given to a partitioning concept that supports distinction of 
partitions for the actual implementation, the environ-
mental model and instrumentations for simulation only. 
This concept does not press the model into a certain struc-
ture but still provides hierarchical properties to the parti-
tioning process. The model uses a multi-domain approach 
with both continuous-time and discrete-event views. It 
includes signal-flow components as well as statechart dia-
grams. Goals of the modelling process are functional vali-
dation of the solution and performance evaluation. In fu-
ture the approach should contribute to a methodology for 
generating software from the model. The modelling envi-
ronment in the study has been a multi-domain modelling 
tool. An experimental implementation of the partitioning 
algorithm helped investigating the method. Further im-
provements are discussed too. 
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1. Introduction 
Modelling and simulation environments provide a use-

ful way for the systematical design of embedded systems. 
This approach avoids programming errors and provides a 
number of ways to check the design by simulation and 
formal analysis. This work deals with graphical modelling 
methods where models consist of blocks, signals and hier-
archical refinements. 

In the modelling process some kind of partitioning oc-
curs. This means that model elements will be mapped to 
certain partitions of the model. One common procedure is 
partitioning into hardware and software partitions during 
hardware-software-codesign. But other views to model 
partitioning are also of interest, as described below. 

The model must not only include the embedded system 
being designed (e.g. the controller) but also some embed-

ding environment (e.g. the controlled process). Only in 
this way the interaction of the controller with the con-
trolled process can be investigated and useful information 
about the solution can be derived. So the model includes 
the embedded system, the embedding environment and the 
interface elements between them. The latter constitute the 
input and output ports of the embedded system. 

Since the model partition that contains the embedded 
system is intended to implement a real system it will be 
referred to as implementation partition of the model. The 
partition that contains the embedding environment will be 
referred to as environment partition. 

Other elements may have been added for simulation 
purposes only (sometimes formal analysis may also be 
supported by additional model elements). Such elements 
may generate stimuli or collect data, for instance. The 
elements can work interactively (user input and live dis-
play during simulation) or not. They may be supported by 
other operational elements that do some scaling, format-
ting and so on.  

Such elements must be distinguished from the embed-
ding environment because they do not establish interfaces 
to the embedded system. This special partition of the 
model here will be referred to as instrumentation parti-
tion. 

Generally hierarchical model structures are used. 
Therefore there must be a concept how to propagate the 
mapping information downwards the hierarchical tree. 
This kind of partitioning a model mostly must be done 
manually because this information derives from user’s 
intention. But a method is needed that supports the user in 
this process and provides flexibility while preserving the 
model’s consistency. 

2. Known Approaches 
This section will outline how the mapping of the blocks 

of the model to the partitions mentioned above can be 
handled during the modeling process. Some shortcomings 
will be identified. 



Top Level Blocks 
Some implementation frameworks require the whole 

implementation part to be in just one block at an upper (or 
the uppermost) hierarchical level. The ports of this block 
automatically constitute the embedded system’s in-
put/output interface.  

As an example the Polis framework uses this approach, 
as described by Balarin et al. [1]. This framework allows 
generating code from a discrete event model. Here exactly 
one block must be identified that fully contains the gener-
ated system. Similar methods have been used by H. Rath 
[2] and by ourselves in former work [3]. 

Since there is no distinction between embedding envi-
ronment and instrumentation, the latter parts must be re-
moved from the model prior to generating code. Other-
wise unwanted inputs and outputs would be generated.  

The approach may be generalized by defining exactly 
one block for each of the three partitions (implementation, 
environment, instrumentation). A similar method would 
be defining one block for implementation and one block 
for environment. Everything outside these blocks belongs 
to instrumentation. The blocks mentioned above will most 
likely reside at top hierarchical level. 

This generalized scheme provides full support for de-
fining the actual inputs and outputs of the system gener-
ated. They can easily be examined and extracted since 
they all are located at the same hierarchical level.  

But a closer look at some nontrivial models reveals the 
main shortcoming: All connections that cross the borders 
of the partitions at first must be routed to the top level 
block of this partition, possibly traveling through some 
hierarchical levels and requiring numerous additional 
ports at the borders of lower level blocks. This leads to a 
model structure where the sources and the sinks of cross-
partition connections typically reside at different places 

and must be followed through some levels in order to find 
the counterpart. 

While this approach clearly represents the organiza-
tional structure of the model it unfortunately hides its 
functional structure. As an example think about control 
loops that are deeply embedded in the model. The imple-
mentation partition contains the control algorithms, while 
the environment contains the process controlled. In this 
scheme the control loops are divided into two distant parts 
each, and their relationships are not clearly visible.  

So this approach leads to poorly structured models that 
are overcrowded by connections and ports and that hide 
their functional structure instead of exposing it. Figure 1 
schematically illustrates this problem. 

Textual Reference 
This overcrowding by connections and ports may be 

removed if the cross-partition connections are represented 
by textual reference. By doing so the graphical model ef-
fectively divides into two or three non-connected parts. 
The advantage is that these references may be placed in 
deep levels near the interfacing blocks. So there is no need 
for routing them through higher hierarchical levels. But 
the approach lacks any kind of graphical representation of 
the relationships, since text symbols must be searched for 
instead of looking for visible connections. 

However, this approach has been used in a former work 
dealing with an object oriented modelling paradigm [4]. 
As expected the models had clean structures, but it was 
difficult to recognize functional relationships. 

3. Concept: Individual Assignment of 
Blocks 

To overcome these shortcomings, our approach deals 
with blocks that may be individually assigned to different 
partitions, at any hierarchical level. This seems straight-
forward and easy to implement. But some considerations 
are needed about handling such properties when refining 
the model into deeper levels and about visual representa-
tion.  Furthermore the concept should contribute to valida-
tion procedures. The approach explained below deals with 
such questions. It has been practically examined in a case 
study [5]. 

Mapping Information 
The method attaches the mapping information as a pa-

rameter to each of the blocks of the model. This applies to 
bottom level blocks (leaves) as well as to higher level 
blocks that may contain deeper levels of the model. This 
parameter is the primary representation of the mapping 
information, i.e. the membership of the block to one of the 
partitions. 

Figure 1: Structural view to a model partitioned by 
top level blocks. 
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Exactly one of the following values is to be assigned: 

• None. 
The block is not yet assigned to one of the parti-
tions. 

• Implementation. 
The block is assigned to the partition of the 
model that constitutes the embedded system that 
will be implemented. 

• Environment. 
The block is assigned to the partition of the 
model that constitutes the embedding environ-
ment. 

• Instrumentation. 
The block is assigned to the partition of the 
model that contains elements for simulation only. 

• Miscellaneous. 
The assignment of this block is to be defined 
automatically. 

While the purposes of the ‘Implementation’, ‘Environ-
ment’ and ‘Instrumentation’ values already have been 
discussed, the others need further explanation.  

‘None’ means that no assignment for this block has 
been made. This is the initial state of a block if no other 
assignment is done by rule. For a fully partitioned model, 
all bottom level blocks (leaves) must have a mapping dif-
ferently to ‘None’. 

‘Miscellaneous’ is introduced as a kind of ‘don’t care’ 
property. Typically it is used for elements that do not 
really process data, such as splits and joins. When the in-
terface of the embedded system is to be defined they will 
automatically be assigned to one of the partitions. This 
decision optimizes for minimal cross-partition connections 
and consequently for minimal input/output effort of the 
embedded system. Since the value ‘Miscellaneous’ will be 
preserved in the model, this assignment may change if the 
generation process is repeated after modifying the model. 

Initial Mapping Values 
The initial mapping value of a newly created block in-

stance is defined by the following rule: 

• If the block resides inside another block (i.e. re-
fines it) that has one of the values ‘Implementa-
tion’, ‘Environment’ or ‘Instrumentation’, it in-
herits this value. 

• Otherwise, the block gets the mapping value 
‘None’. 

By using these rules, the refinement elements of blocks 
that already belong to one of the model partitions by de-
fault will be assigned to just this partition. This does not 
apply to the refinement of ‘Miscellaneous’ blocks because 
this value does not represent a partition membership.  

Changing Mapping Values 
The mapping value of any block may be changed by 

user decision. In some cases this change will propagate 
into deeper levels of the model. The following rules apply: 

• The user can assign any value to the block. This 
will override the former value, unless the next 
rule applies. 

• Successful assignment of one value out of ‘Im-
plementation’, ‘Environment’ and ‘Instrumenta-
tion’ to a block will propagate this value down-
wards to the next hierarchical level (i.e. to the re-
finement of this block), if available. All blocks 
with value ‘None’ in this level will be overridden 
by the value propagated. For each of these blocks 
this process iteratively continues downwards the 
hierarchy. Blocks with mapping values other then 
‘None’ remain unchanged. 

Note that these rules are intended to support the process 
of model creation rather than defining the model’s final 
structure only. The partition membership of blocks can be 
defined prior to or after their creation because the assign-
ment applies to previously undefined elements und to 
elements that will be created in future.  

The mapping information is handled consistently to the 
model’s hierarchical structure. So the partitioning process 
leads the user hierarchically through the model. While 
many blocks through some hierarchical levels can be as-
signed at once, intentional assignments previously made at 
deeper levels will be preserved. 

Support for Implementing a Target System 
To continue with the design process the implementa-

tion part must be extracted from the model. In this step the 
input/output interface must be defined. The following 
rules are to be used: 

• Look for bottom level blocks (‘leaves’) with 
mapping value ‘None’. If found, stop the process 
and prompt an error message. 

• Look for bottom level blocks with mapping value 
‘Miscellaneous’. Assign to each of them one 
temporary mapping value out of ‘Implementa-
tion’, ‘Environment’ and ‘Instrumentation’. This 
decision should minimize the number of cross-
partition connections. 

• Collect all bottom level blocks with mapping 
value ‘Implementation’ (including temporary 
values). 

• Collect all ports of these blocks that are con-
nected with at least one block with mapping 
value ‘Environment’. 

The collections produced by the last two rules consti-
tute the embedded system to be generated and its in-
put/output interface, respectively. Obviously only the 
mapping values of bottom level blocks contribute to the 



Figure 2: Top level of model, with blocks belonging to ‘Instrumentation’ (In) and ‘Im-
plementation’ (Im) partitions as well as ‘None’ (N) blocks. 
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final mapping. This means that mapping values of higher 
level blocks are aimed at controlling the refinement proc-
ess during model development. 

4. The Case Study 
As already mentioned this concept has been practically 

examined in a case study. In this study a general-purpose 
multi-domain modelling tool experimentally has been 
equipped with the capabilities needed. Using this setup, 
some complex models for a real project, a high-precision 
measurement system as explained in [6], have been devel-
oped and examined. 

Modelling Tool 
The case study uses the general-purpose modelling and 

design tool MLDesigner [7]. MLDesigner is a commercial 
tool that utilizes modelling principles from the well-
known Ptolemy tool [8], also known as Ptolemy Classic, 
in a renewed implementation. 

In contrast to Ptolemy the MLDesigner tool uses XML-
files to store the models. This makes the model accessible 
for manipulation by external processes. 

Implementing the Mapping Concept 
For this experimental implementation the tool’s pa-

rameter mechanism has been utilized to contain the map-
ping information of each block. The functionalities of 
value propagation and visual representation have been 

added by using an external program. This program filters 
the stored model representation, manipulating it in the 
desired manner. It propagates changed values into deeper 
levels by applying the rules mentioned above. Then it 
modifies a color property of the blocks to provide a visual 
representation. For a final solution the algorithm will be 
integrated into the modelling tool. 

Example Models 
Example models have been created for a real project 

that deals with high precision measuring machines [9]. 
Basically the machine works by moving a carrier with an 
object in all three dimensions. Position values are meas-
ured with high precision (less then two nanometers) and 
controlled by closed loop control. Features at the object’s 
surface are detected by fixed probe devices so the process 
delivers high precision position values for these features. 
Such machines are also known as ‘Scanning Probe Micro-
scopes’ (SPM). 

The models are mixed from discrete-event and con-
tinuous-time paradigms and exhibit a multi-domain na-
ture. They are developed from a previously created model 
described in [6]. While the target system of the design 
process is an embedded multiprocessor system that mainly 
performs closed loop control algorithms and processing of 
sensor values, the mechanical and optical parts of the ma-
chine constitute the embedding environment that is to be 
included into the model too.  

nano_scanner show_positions

laser_noise

xyAxControl

xyzControl



Figure 3: Refinement of block ‘nano_scanner’, with blocks belonging to ‘Environment’ (E) and ‘Instrumentation’ (In) 
partitions as well as ‘Miscellaneous’ (M) blocks. 

E 

E 

E 

E 

M 
M 

M 

M 

M 

M 
M 

In 

In 

In 

In In 
In 

Some of the functions modeled are as follows: 

• Control loops for high precision position control, 
including electro-magnetic actuators, mechanical 
assemblies, laser-optical position sensors, sensor 
signal processing, control algorithms. 

• Initiation and control of function sequences. 

• Controllable error and noise models. 

• Recording and/or interactive display of values 
and states during simulation. 

The model structure was based on the functional rela-
tionships of the blocks. The assignment of blocks to the 
model’s partition was handled by using the concept devel-
oped. It became visible that the method was easily han-
dled by the users and lead to useful, clearly arranged mod-
els.  

Figure 2 shows the top level of the main model. Only 
five blocks appear. The block ‘nano_scanner’ models the 
mechanical system of the measurement machine, consist-
ing of movable parts that can be positioned with high pre-
cision. Embedded at deeper levels are components that 
simulate errors and noise influences and collect informa-
tion during simulation. At this level partition membership 
of this block had not been defined (mapping value 
‘None’). 

The same is true for block ‘laser_noise’, containing 
elements of the measurement system and assigned error 

models, and for block ‘xyzControl’, containing main parts 
for closed loop control of positions.  

The block ‘xyAxControl’ mainly contains software com-
ponents for sequence control and operation management 
of the machine that belong to the ‘Implementation’ parti-
tion. So this mapping property has already been defined at 
this level and has automatically been propagated into 
deeper levels. 

The block ‘show_positions’ contains elements that col-
lect and visualize position values during simulation and is 
therefore assigned to the ‘Instrumentation’ partition. 

Remark: These figures are screenshots taken 
from the actual modelling tool. Since the visuali-
zation of mapping values originally done by col-
ors does not apply to monochrome figures these 
values are clarified by letter symbols (inserted 
manually). Please refer to figure captions for ex-
planation.  

Figure 3 shows the refinement of the block 
‘nano_scanner’ containing model components for the 
mechanical system (e.g. ‘3d_system’ and ‘cantilever’, 
belonging to ‘Environment’ partition), ‘Instrumentation’ 
elements (e.g. sources for parameters that are controllable 
during simulation) and a number of ‘Miscellaneous’ 
blocks such as forks and blackholes (dummy destina-
tions). While this block ‘nano_scanner’ basically belongs 
to the model environment, handling of blocks with other 
mapping properties is not hampered inside this level. 
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Figure 4 illustrates simulation results by showing a part 
of the interactive plot of position values delivered by ele-
ments inside the ‘show_positions’ block. Intended step-
wise changes of x and y values are visible as well as un-
wanted vibration and noise errors in all three axis. 

5. Results and Conclusion 
In this paper a flexible concept for assigning a model’s 

components to different model partitions has been defined 
and explained. The concept has been implemented and 
examined experimentally with nontrivial models from a 
real project. The main expectations concerning flexible 
handling during model development have been met. 

Further work will include refining the method and fully 
integrating it into the modelling tool. The method can be 
further developed by generalizing the predefined set of 
model partitions into a dynamically extensible partition 
concept. This allows supporting partitioning problems 
such as hardware/software partitioning or workload parti-
tioning for multiprocessor systems by the same approach. 

Moreover the inclusion of methods of multitasking 
software behavior [10] and code generation for target sys-
tems [3] will be explored in order to contribute to an inte-
grated design framework for embedded systems. 
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Figure 4: Example position display from simulation 
(x, y, z position values, partly shown). 
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