A Case Study for Partitioned Modelling of a Control System

Ilmenau Technical University, Germany

Where is Ilmenau?

Topics

- 1. Introduction
- 2. Known Approaches
- 3. This Approach: Individual Assignment
- 4. Case Study
- 5. Results and Conclusion

Supported by the German Research Council (DFG) under SFB 622.

1. Introduction

Model-Based Design:

- Software design or hardware-software codesign based on formal models
- Checking the model by analysis and simulation
- Avoiding some errors, optimizing the design
- Some kind of partitioning occurs (mapping of elements to partitions)

Common Partitions

Implementation:

System intended to be implemented into hardware and software

Environment:

Embedding components, including controlled process and its context

Instrumentation:

Elements for simulation/analysis only (e.g. stimuli, logs, interactions, etc.)

Case study: Refine this concept. Use hierarchical approach. Evaluate within real project.

2. Known Approaches

- Top level blocks:
 - Interfaces between blocks easily visible
 - Many connections routed through several levels, many ports needed
 - Functional structure hidden

Known Approaches

- Textual reference:
 - Less ports and connections
 - No connections between partitions
 - No graphical representation of relationships
 - Functional structure hidden

3. This Approach: Individual Assignment

- Individual assignment:
 - Functional structure visible
 - Less ports and connections
 - Good graphical representation of relationships
 - Hierarchical concept needed
 - Tool support needed

Refined Partition Set

None

- Blocks that are not yet assigned
- Implementation (Impl)
 - Blocks intended to be implemented into HW and SW

Environment (Env)

- Blocks constituting the embedding environment

Instrumentation (Inst)

- Blocks for simulation and analysis only

Miscellaneous (Misc)

- Blocks to be assigned automatically

Hierarchical Mapping Rules

- Initial mapping value of a new block
 - New block refines a block with value other then *Misc*: Inherit this value
 - Otherwise: Get value None
- Downlevel propagation of a changed value
 - Current value is None: Inherit value propagated
 - Otherwise: No change
 - Values None and Misc do not propagate

Steps for Extracting a Target System

(1) Collect leaves with value *None*: If any: Stop. Partitioning is not complete.

(2) Collect leaves with value *Misc*: Automatically generate temporary assignment to one partition out of *Impl, Env, Inst.* (Minimizing cross-partition connections).

(3) Collect leaves with value *Impl*: Blocks constitute target system.

(4) Collect ports at leaves with value *Impl* that are connected to blocks with value *Env*: Ports constitute interface of target system.

(5) Stop.

4. Case Study

- Project:
 - HW and SW design for a DSP system that controls a high precision measuring machine
- Modelling infrastructure:
 - Available modelling tool
 - External program (for value propagation and target extraction)
- Representation of mapping value:
 - Block parameter (enumeration type)
 - Background colour of block

Modelling Environment

Modelling tool used: MLDesigner[®] from MLDesign Technologies, Inc.

MLDesigner: Copyright (c) 2004 MLDesign Technologies, Inc. All rights reserved. <u>www.mldesigner.com</u>

- Hierarchical multi domain modelling framework
- Capabilities for simulation, design check, export
- Derived from well-known Ptolemy tool (University of Berkeley)
- No generic support for partitioning

Principle of Scanning Probe Microscope

(From a project team at Ilmenau Technical University)

Example Model: Top Level

Screenshot from MLDesigner. Italic words inserted manually.

Example Model: Refined Block

Screenshot from MLDesigner. Italic words inserted manually.

5. Results and Conclusion

- Case study:
 - First validation of method
 - Demonstration with nontrivial models from real project
 - Experimental tool support
- Further work:
 - Improvement of tool support
 - Integration into design processes
 - Generalisation towards extensible partition set

Contact

Dr. Bernd Däne Ilmenau Technical University Dept. of Computer Architectures

P.O. Box 100565 98684 Ilmenau, Germany Bernd.Daene@tu-ilmenau.de

http://tin.tu-ilmenau.de/ra/