A Case Study for Partitioned Modelling of a Control System

Ilmenau Technical University, Germany
Where is Ilmenau?
Topics

1. Introduction
2. Known Approaches
3. This Approach: Individual Assignment
4. Case Study
5. Results and Conclusion

Supported by the German Research Council (DFG) under SFB 622.
1. Introduction

Model-Based Design:

- Software design or hardware-software codesign based on formal models
- Checking the model by analysis and simulation
- Avoiding some errors, optimizing the design

- Some kind of **partitioning** occurs (mapping of elements to partitions)
Common Partitions

- **Implementation:**
 System intended to be implemented into hardware and software

- **Environment:**
 Embedding components, including controlled process and its context

- **Instrumentation:**
 Elements for simulation/analysis only
 (e.g. stimuli, logs, interactions, etc.)

Case study:
Refine this concept.
Use hierarchical approach.
Evaluate within real project.
2. Known Approaches

- Top level blocks:
 - Interfaces between blocks easily visible
 - Many connections routed through several levels, many ports needed
 - Functional structure hidden
Known Approaches

- Textual reference:
 - Less ports and connections
 - No connections between partitions
 - No graphical representation of relationships
 - Functional structure hidden
3. This Approach: Individual Assignment

- Individual assignment:
 - Functional structure visible
 - Less ports and connections
 - Good graphical representation of relationships
 - Hierarchical concept needed
 - Tool support needed
Refined Partition Set

- **None**
 - Blocks that are not yet assigned

- **Implementation** (*Impl*)
 - Blocks intended to be implemented into HW and SW

- **Environment** (*Env*)
 - Blocks constituting the embedding environment

- **Instrumentation** (*Inst*)
 - Blocks for simulation and analysis only

- **Miscellaneous** (*Misc*)
 - Blocks to be assigned automatically
Hierarchical Mapping Rules

- Initial mapping value of a new block
 - New block refines a block with value other than Misc: Inherit this value
 - Otherwise: Get value None

- Downlevel propagation of a changed value
 - Current value is None: Inherit value propagated
 - Otherwise: No change
 - Values None and Misc do not propagate
Steps for Extracting a Target System

(1) Collect leaves with value None:
 If any: Stop. Partitioning is not complete.

(2) Collect leaves with value Misc:
 Automatically generate temporary assignment to one partition out of Impl, Env, Inst.
 (Minimizing cross-partition connections).

(3) Collect leaves with value Impl:
 Blocks constitute target system.

(4) Collect ports at leaves with value Impl that are connected to blocks with value Env:
 Ports constitute interface of target system.

(5) Stop.
4. Case Study

- **Project:**
 - HW and SW design for a DSP system that controls a high precision measuring machine

- **Modelling infrastructure:**
 - Available modelling tool
 - External program (for value propagation and target extraction)

- **Representation of mapping value:**
 - Block parameter (enumeration type)
 - Background colour of block
Modelling Environment

Modelling tool used:

MLDesigner® from MLDesign Technologies, Inc.

MLDesigner: Copyright (c) 2004 MLDesign Technologies, Inc. All rights reserved. www.mldesigner.com

- Hierarchical multi domain modelling framework
- Capabilities for simulation, design check, export
- Derived from well-known Ptolemy tool (University of Berkeley)
- No generic support for partitioning
Principle of Scanning Probe Microscope

(From a project team at Ilmenau Technical University)
Example Model: Top Level

Screenshot from MLDesigner. *Italic words inserted manually.*
Example Model: Refined Block

Screenshot from MLDesigner. *Italic words inserted manually.*
5. Results and Conclusion

- **Case study:**
 - First validation of method
 - Demonstration with nontrivial models from real project
 - Experimental tool support

- **Further work:**
 - Improvement of tool support
 - Integration into design processes
 - Generalisation towards extensible partition set
Contact

Dr. Bernd Däne
Ilmenau Technical University
Dept. of Computer Architectures
P.O. Box 100565
98684 Ilmenau, Germany

Bernd.Daene@tu-ilmenau.de
http://tin.tu-ilmenau.de/ra/