
Abstract
Maintenance is a time consuming activity within

software development and it requires a good under-
standing of the system in question. It is hard or even
impossible to understand poorly documented legacy
systems. Nevertheless, developers try to understand
unknown object oriented systems by analysing the
source code to recover the architecture of the system,
which is a hard task since the dependencies between
the classes cannot be recovered good enough. Here,
the knowledge about design patterns can help develop-
ers to understand the underlying architecture faster.
We analysed existing pattern search approaches and
compared them by their recall and precision values,
metrics out of the Information Retrieval domain. As a
result we developed own pattern search algorithms for
the 23 design pattern described by Gamma et al. [1].
This fast abstract briefly explains the basics of our pat-
tern search and describes first results of the search al-
gorithms developed as a Java plug-in for the Together
IDE. This work was funded by the BMBF [2] and is
part of the InPULSE [3] project.

Keywords: Pattern Search, Search Algorithms, De-
sign Patterns.

1 Introduction
Developers need to understand software systems

before they can maintain them, although documenta-
tion and/or design models are missing or of a poor
quality. In most cases only the source code as the basic
form of documentation is available.

Design patterns are pre-designed and tested solu-
tions of fundamental design problems leading to an ad-
vantage for developers, since they can use and learn
from the wisdom of experienced colleagues. Knowl-
edge about patterns in existing systems together with
the relations of classes to corresponding patterns leads
towards a better and faster understanding of software
systems. Patterns used in an architecture are not explic-
itly described in most systems and thus, we developed

own algorithms for the automated search of patterns in
source code.

1.1 Background
We analysed current pattern search methods like

[4], [5] or [6], to rate their search quality, quantified by
metrics based on the found and existing patterns. Three
cases need to be distinguished:

• True positive, in case a patterns was identified and
is really existing in the source code. This case is
desired.

• False positive, in case a pattern was found, but is
not implemented in the source code. This case has
to be avoided.

• False negative, in case a pattern is implemented
and existing in the source code, but was not found.
This case has to be avoided.

We have done the quantification using the recall
and precision values out of the Information Retrieval
domain [7]. Recall is the number of the implemented
patterns divided by the number of found patterns. Pre-
cision is ratio of found patterns divided by the number
of existing patterns. Unfortunately none of the existing
approaches could be sufficiently used for searching all
Gamma patterns. Thus, we developed new and ex-
tended existing search algorithms.

1.2 Searching for minimal key structures
The key point of our algorithms are negative search

criteria for patterns. With this we define the structure
of each pattern by its required, forbidden (negative)
and don't-care elements. All required elements have to
be present, forbidden elements are not allowed in the
structure and uncertain elements can be present, but
will be ignored to come to a successful identification
of a pattern by the algorithm. We defined search struc-
tures for all Gamma patterns together with algorithms
which we implemented as Java plug-in for the To-
gether IDE.

Searching Design Patterns in Source Code

Detlef Streitferdt, Christian Heller, Ilka Philippow
Ilmenau Technical University

{detlef.streitferdt | christian.heller | ilka.philippow}@tu-ilmenau.de

Analysed System Drawlet AWT Tomcat Patterns

Pattern

in
cl

ud
ed

fo
un

d

in
cl

ud
ed

fo
un

d

in
cl

ud
ed

fo
un

d

in
cl

ud
ed

fo
un

d

pr
ec

. i
n

%

re
ca

ll
in

 %

C
re

at
io

na
l P

at
te

rn
s Abstract Factory n 3 y 10 n 4 1 1 100 100

Builder n 87 n 127 n 469 1 12 8 100

Factory Method y 13 n 27 n 22 4 4 100 100

Prototype y n n 11 n 2 2 2 100 100

Singleton n n y 8 n 6 1 1 100 100

St
ru

ct
ur

al
 P

at
te

rn
s

Adapter n 40 n 52 y 123 1 3 33 100

Bridge n 61 y 61 n 345 1 25 4 100

Decorator n n n n n n 1 1 100 100

Facade n 194 n 322 y 973 1 77 1 100

Flyweight n n y n n n 1 1 100 100

Composite y n y n n n 1 1 100 100

Proxy n 9 n 14 y 73 1 3 33 100

Be
ha

vi
ou

ra
l P

at
te

rn
s

Command n 13 n 20 n 46 1 1 100 100

Observer y n y n y n 1 1 100 100

Visitor n 1 n 6 n 4 1 1 100 100

Interpreter n n n n n n 2 2 100 100

Iterator y n n n n n 1 1 100 100

Memento y n n n n 3 1 1 100 100

Templ. Method y 1 y 22 n 17 1 1 100 100

Strategy y 4 n 4 y 12 1 17 6 100

Mediator y 135 y 88 n 220 1 25 4 100

State n n n n n 2 1 1 100 100

Chain of Respons. n n n n y 26 1 3 33 100

The numbers are showing the included or found patterns.
y The pattern was used to develop the system, but we don't know how often.
n It is not known whether or not the pattern is present in the system.

Table 1: Results of Searching Patterns

2 Results so far
Up to now we tested our algorithms with several

systems. Drawlet, a picture processing system with
195 classes [8], the Abstract Windowing Toolkit
(AWT) as part of the Java 2 Standard Edition with
354 classes and Tomcat as part of the Jakarta Open
Source project with 1035 classes. We have taken the
documentation for AWT and Tomcat from [9] and for
the Drawlet project from [10]. Unfortunately these
documents are rather poor when it came to patterns.
Thus, we were not able calculate the precision and re-
call values for these projects.

The lack of a good reference system turned out to
be the key problem for the comparison of pattern
search algorithms. We found no reference system with
well documented patterns, that is freely available for
testing pattern search algorithms. Thus, a very impor-
tant issue in our research group is the development of
such a reference system for pattern search algorithms.
First, we implemented all patterns according to
Gamma, what lead to the Patterns project with 88
classes. For better results we already have a version of
a more complex pattern reference system, which is still

under development. We plan to have the first public
version ready this fall.

Given the poor documentation, only in our Patterns
system we have been able to quantify the search qual-
ity, see Table 1. The low quality values are due to
structural similarities to non-pattern structures, what
we address in one of our current projects.

3 Outlook
We are permanently enhancing our search algo-

rithms, which will soon be adjustable to address many
implementation variants for a given pattern. The preci-
sion and recall results can be influenced by parameters
that will be adjusted by the developers. In addition, we
are working on an enhanced reference system for all
23 Gamma patterns, fully documented and imple-
mented in different flavours. With this reference sys-
tem we will be able to compare different search algo-
rithms better. Finally a pattern search plug-in for
Eclipse is an issue for the near future.

4 References
[1] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, Design Patterns - Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.
[2] BMBF, Bundesministerium für Bildung und Forschung,
www.bmbf.de, 2004.
[3] InPULSE, Integrative Pattern- und UML orientierte Lern-
und System-Entwicklungsumgebung, www.inpulse-
online.de, 2004.
[4] G. Antoniol, R. Fiutem, L. Cristoforetti, "Design pattern
recovery in object-oriented software", In Proceeding of the
6th International Workshop on Program Comprehension
(Ischia, Italy, June 1998), pp. 153-160 , 1998.
[5] Jagdish Bansiya, Automatic Design-Pattern
Identification, www.ddj.com, 1998.
[6] Hyoseob Kim, Cornelia Boldyreff, "A method to recover
design patterns using software product metrics", In
Proceedings of the Sixth International Conference on
Software Reuse (ICSR6), Vienna, Austria , 2000.
[7] Salton G., Introduction to Modern Information Retrieval,
McGraw-Hill, New York, 1983.
[8] Rolemodel Software, Homepage,
www.rolemodelsoftware.com/drawlets/index.php, 2004.
[9] Wiki-Server, PatternStories,
wiki.cs.uiuc.edu/PatternStories/DesignPatterns, 2004.
[10] Ken Auer, "Fundamental Elements of an Extendible
Java Framework", Rolemodel Software,
www.rolemodelsoftware.com , 1997.

