
Abstract
System families are an idea of software reuse in a specific
problem domain. Existing methods have little requirements
engineering support for system family development. This
short paper proposes a requirements metamodel for system
family development. Traceability throughout model ele-
ments is a necessary precondition for preserving the consis-
tency of the complete family model during development
and is a main issue in this paper as well as for software de-
velopment in general. Family development based on the
metamodel guarantees traceability by the inclusion of all
development artifacts in a single and consistent model.

Keywords

System families, traceability, software reuse

1 Introduction
Software developers try to satisfy the demands for short de-
velopment cycles with iterative development methods and
reuse efforts. Within software development, the require-
ments engineering phase results in a specification docu-
ment, upon which all other development activities and the
contract between the supplier and manufacturer of the sys-
tem are based. The outcome of a project and the problem
comprehension are mainly dependent on the requirements
engineering phase and its results. The system family con-
text puts even higher demands on the requirements engi-
neering phase, since many applications rely on developed
family assets.

System families, based on the work of Parnas [5] in 1976,
are the idea of software reuse in a given problem domain.
Through a comparison of a set of given similar systems,
developers can extract common assets found in all systems
and variable assets spread over all systems. This analysis
results in a flexible family architecture for the development
of future variants.

Existing system family methods adopt ideas out of the do-
main engineering discipline, which is divided into three
parts. Domain analysis forms the commonality and vari-
ability data basis. In the following domain design phase a
flexible architecture is developed. Based on this architec-
ture applications can be derived and implemented which is
done in the domain implementation phase. 

Feature Oriented Domain Analysis (FODA, [3]) addresses
the first phase of domain engineering. By hierarchically ar-
ranging all common and variable features of a domain, re-
lationships between different system variants are modeled.
No explicit assignments of requirements to features are de-
scribed in the method, what opens a gap between the model
of requirements and the model features. Methods like Re-
use-driven Software Engineering Business (RSEB, [1]) at-
tempt to fill this gap with a use-case driven approach and
object oriented development. RSEB reuse is achieved with
component systems and a given reference architecture. The
successor method FeatuRSEB [4] integrates feature model-
ing and RSEB to offer a family view onto the model.
FeatuRSEB models the mutual affiliation of system fea-
tures and their affiliation to design assets. Thus a model of
variants is developed, whereas the clear association of re-
quirements to features is still missing. 

Existing approaches try to address system family aspects
by variability mechanisms for modeling systems with the
Unified Modeling Language (UML) as in RSEB [4], by de-
fining text based composition rules as done with frames in
[6], or by defining merge rules for composing a system ar-
chitecture out of a set of models as in Subject Oriented De-
sign [7]. In all methods a requirements model is missing
which incorporates the notion of commonality and variabil-
ity with the possibility of accessing other development ele-
ments. Current methods address the requirements engineer-
ing phase by high level constructs such as use-cases. This
is insufficient, since not all systems are workflow oriented.
Thus a lower level approach is needed.

2 Requirements Model
The proposed solution consists of a metamodel upon which
a low level model of requirements can be build for devel-
oping system families. The metamodel as shown in Figure
1, has a requirement as the central model element. This re-
quirements is an indivisible piece of text describing a small

Traceability for System Families

Detlef Streitferdt
Ilmenau Technical University

P.O. Box 100565, 98684 Ilmenau
detlef.streitferdt@theoinf.tu-ilmenau.de

www.theoinf.tu-ilmenau.de/~streitdf



portion of the system to be developed. A set of require-
ments can be assigned to a feature and features can be hier-
archically modeled as described in FODA.

The left part of the figure depicts the system family model
to which all requirements are related. System families con-
sist out of a core and many variable parts. Each require-
ment must either belong to the core or to a set of variable
parts. 

A system family is intended to be the starting point for the
development of many variants in the given domain. Thus
the family contains a set of variants, which represent con-
figurations of the applications to be implemented. Each
variant implicitly contains the family's core and a set of
variable parts. Based on the configuration of a variant the
corresponding application can be rebuild at any time.

Priorities are important for planing and managing the im-
plementation of an application. In addition to the priority
of a requirement, a priority for the relation of a requirement
to a variant and thus an application of the family is in-
cluded in the metamodel, as stated in [2]. Identical require-
ments for different variants might have varying importance
according to the customer's intended use of the system.

UML diagrams are a central modeling concept of the de-
sign phase. For the requirement engineering phase the dia-
grams are used to explain the bare text. Usage of diagrams
instead of lengthy text paragraphs should be encouraged. In
the later design phase the architecture of an application is
developed by refining existing diagrams and adding new
ones, whereas changes in an application model need to be
related to the corresponding requirements.

Application development out of a flexible family architec-
ture is done by combining model elements. The set of
model elements is identified by the configuration of a de-
sired variant. These elements are composed using rules de-
scribed in Subject Oriented Design [7].

Relations between requirements can be modeled to formu-
late constraints. The hierarchical arrangement of require-
ment is referred by refinement relations. Mutual inclusion
or exclusion of sets of requirements are modeled with de-
pendency relations, and similarity relations can be used to
model a coherent set of requirements. 

A model derived from the metamodel contains all elements
created by the development activities. Several views can be

derived from this model. Depending on the role of the per-
son in the project, the relevant data can be extracted and
presented. The model can be analyzed, to generate data for
management decisions.

Traceability between development artifacts is built into the
metamodel. For any given model element the correspon-
dence to other model elements and thus traceability infor-
mation can be extracted out of the requirements model. For
system family development a centralized data model based
on the proposed metamodel is needed to enable a complete
and consistent traceability. In addition tool support is
needed to perform consistency checking and analyses.

3 Summary and Outlook
This research integrates the ideas of existing methods and
models to form a new metamodel. The central concept of
an indivisible requirement together with the model of sys-
tem families enables general requirements engineering for
system families.

Current work is focused on a development method for sys-
tem families and the refinement of a prototype based on the
eXtensible Markup Language (XML). The prototype is be-
ing used in university projects and a cooperation project
with industry partners, to evaluate, refine and validate the
proposed metamodel in practice.

References
1. Ivar Jacobson, Martin Griss, Patrik Jonsson, Software

Reuse: Architecture, Process and Organization for
Business Success. Addison-Wesley-Longman, 1997.

2. Juha Kuusela, Juha Savolainen, Requirements Engi-
neering for Product Families. Proc. of the 1997 Inter-
national Conference on Software Engineering (ICSE),
1997.

3. Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, Feature-Oriented Domain Analy-
sis (FODA): Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
1990.

4. Martin L. Griss, John Favaro, Massimo d' Alessandro,
Integrating Feature Modeling with RSEB. Hewlett-
Packard Company, 1998.

5. Parnas D. L., On the design and Development of Pro-
gram families. IEEE Transactions on Software Engi-
neering, SE-2: (March 1976).

6. Paul G. Basset, Framing software reuse: Lessons From
The Real World.(1997), Prentice-Hall.

7. Siobhán Clarke, William Harrison, Harold Ossher, Peri
Tarr, Subject-Oriented Design: Towards Improved
Alignment of Requirements, Design and Code. Proc. of
Conf. on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), 1999.

Figure 1: Metamodel for system families

System Family

Core

Variable part

Variant

1

1..*

Requirement

Feature

1..*

1

{xor}

*

1 1

Relation

1..*

*

Priority

Refinement
Dependency
Similarity

UML-DiagramSOD-Subject

1..*

1 *

*

1..*

1..*

1

1..*


